
REPORT NO. 10

NETWORK PERSPECTIVES **ON BIOECONOMY**

Lea-Marie Braun – UDE Christoph Heckwolf – STO Jakob Hoffmann – U Heidelberg Marco Schmitt - STO

24-06-2022

CONTENT

- I. WHAT IS THE BIOECONOMY?
- II. NETWORK PERSPECTIVES ON THE BIOECONOMY
- III. THE BIOECONOMY AS DOMAIN OF COMMUNICATION (UDE)
- IV. THE BIOECONOMY AS A TECHNOLOGICAL FIELD (HEI)
- V. THE BIOECONOMY AS RESEARCH COLLABORATION LANDSCAPE (STO)
- VI. WHAT DO THE PERSPECTIVES OFFER?

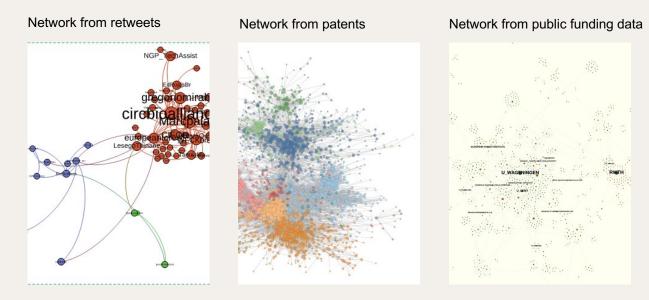
BIOTEXFUTURE TRANSITION LAB

WHAT IS THE BIOECONOMY?

A broad umbrella concept and funding scheme combining biotech, market creation and sustainability

• BMBF

3


- Vision of a biobased economy by 2030 in alignment with 2030 Agenda for Sustainable Development
- EU-Commission
- Create a bioeconomy, that is sustainable for "people, planet and profit"
 - · Food security
 - Climate-neutral production
 - Mitigate climate change by reducing pressure on ecosystems
 - · Protect, maintain and use biodiversity
 - · Protect sustainability of natural resources
 - Reduce dependence on non-renewable resources

Sustainable development goals form the umbrella for bioeconomy strategies

NETWORK PERSPECTIVES ON THE BIOECONOMY

The Bioeconomy as a domain of communication on social media platforms (like Twitter) The Bioeconomy as a technology development landscape/ technological field

THE BIOECONOMY AS A DOMAIN OF COMMUNICATION ON SOCIAL MEDIA PLATFORMS

DATA TRACKING & ANALYSIS

- To analyze the bioeconomy discourse on Twitter, data from May 2021 and May 2022 was collected
- · Keywords were collected for both timeframes such as "bioeconomy"
- The data was prepared and analyzed with a social network analysis using Gephi and topic modeling using R

Twitter

((・ └ ・))

1	Μ	F	F	R	Δ	Μ	F
	IVI		Г		Α		

01.05.2021 - 31.05.2021 01.05.2022 - 31.05.2022

	<u> </u>
	•
	-
\sim	

TRACKING

Keyword-based

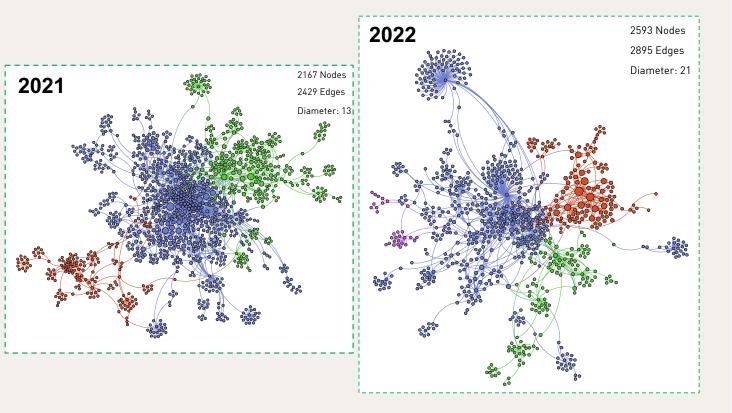
- Bioeconomy
- · Bio-based economy
 - #bioeconomy
 ...

Г		
	$-\Box$	

METHOD

Social Network Analysis (Gephi)

Topic Modeling (R)

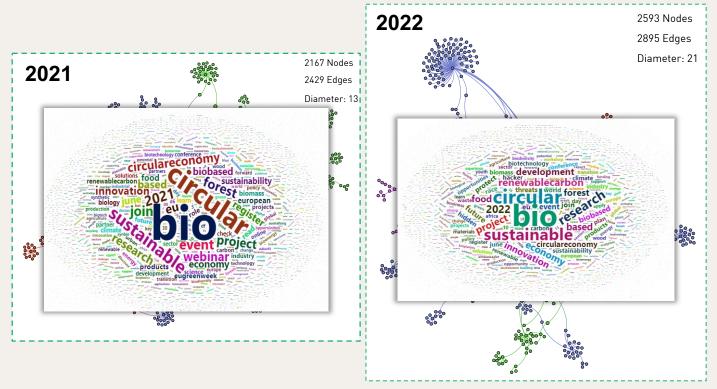


NETWORK BIOECONOMY

Social Network Analysis

7

- Here, the social networks on Bioeconomy are shown for both years
- Three different clusters can be depicted (green, purple, red)
- Small changes between the years can be observed
 - Distribution of nodes & edges
 - Red cluster gained size in nodes, showing more relevant communication and interaction within the cluster

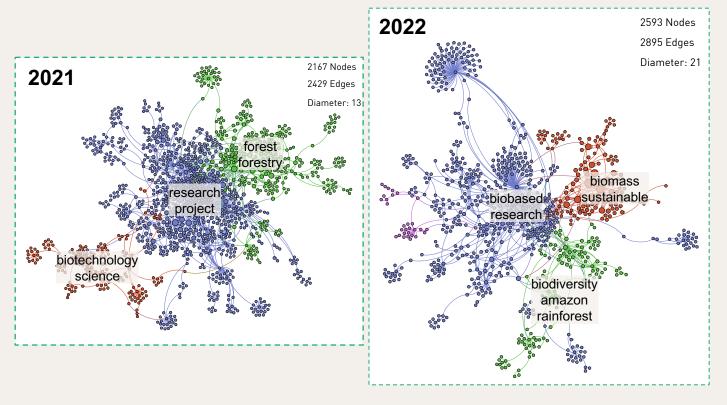

NETWORK BIOECONOMY

Social Network & Topic Modeling

 The main topics addressed in both years mainly remained the same

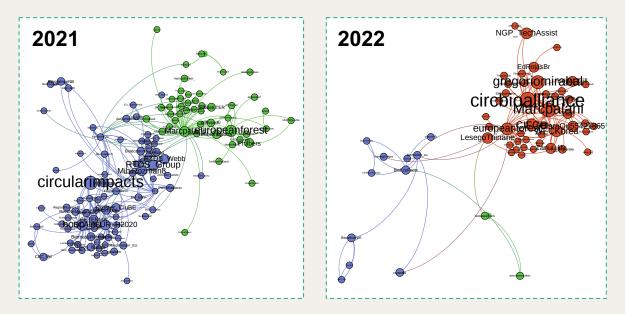
8

 The communication contained words such as "bio", "sustainable", "research", "circular" - mirroring the idea of Bioeconomy perfectly


NETWORK BIOECONOMY

Social Network & Topic Modeling per Cluster

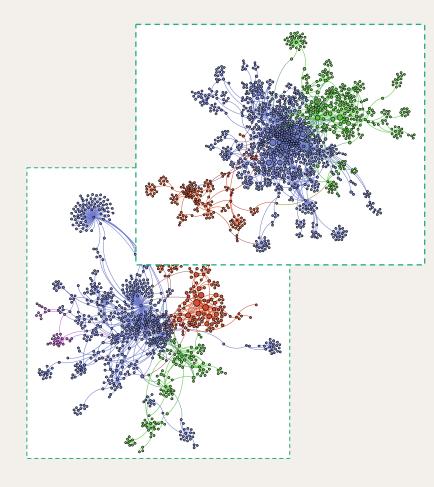
• To gain deeper insights in the bioeconomy discourse, it is analyzed what is said within the different clusters


9

- Understanding which topics are relevant
- Examining which topic gain importance
- Observing changes in communication

KEY ACTORS ON BIOECONOMY

- · Examining who the key actors are helps to understand who shapes and influences the network and communication around Bioeconomy
- In 2021, the main actors were located in the green and purple cluster
- A change can be observed in the key player of Bioeconomy since the red cluster gain importance (most key actors in 2022 can be found here)


- Most key actors are researcher or research groups (shown by the green rows), indicating that the Bioeconomy discourse in mainly influenced by scientists
- Organizations on Bioeconomy can also be found frequently in the network

KEY ACTORS

Based on Eigenvektor Centrality

Year	Name	Background
	2022 Marc Palah	Director of European Forest Institute Chair
	2022 European Forest Institute (EFI)	Research & policy support on forest-related issues
	2022 Eduardo Rojas Briales	Professor at Forestry Department
	2021 European Forest Institute (EFI)	Research & policy support on forest-related issues
	2021 Marc Palah	Director of European Forest Institute Chair
	2021 RTDS Group	Research Group
	2021 Mihaela Rozman	Researcher
	2021 Stephen Webb	Researcher
	2021 SCALIBUR project	EU funded research project on biowaste
	2021 HOOP Project #UrbanBioeconomy	HOOP Project on urban circular bioeconomy
		Governmental organizations, companies, investors,
	2022 Circular Bioeconomy Alliance	research organizations and NGOs
	2022 CIFOR	Environmental Conservation Organization
	2022WFCKorea New Generation Plantations	Account of the XV World Forestry Congress
	2022 Technical Assistance	'ecosystem of collaboration'
	2021 CluBE	Organization of local bioeconomy actors in Greece
	2021 Circular Economy	The international network of #CircularEconomy professionals and organizations
	2022 Gregorio Mirabal	Activist
	2022 Lesego Thinane	Activist
	2022 Environmentalist Lily Tanui	Director of Tree Growers Association of Kenya
	2021 Philip Chambers	Forester

KEY LEARNINGS

Bioeconomy as a domain of communication on social media platforms

- The discourse is mainly influenced by researchers and research groups who have been found to communicate the most about bioeconomy
- Three main clusters can be found in the discourse of bioeconomy, each focusing on different topics
- The red cluster (focusing on biotechnology & biomass) gained importance over the year
- The main focus of the topics addressed remained the same over the year
- Only small shifts in the foci can be observed


THE BIOECONOMY AS A TECHNOLOGICAL FIELD

BIOECONOMY: A TECHNOLOGY LANDSCAPE

- Identify IPC patent technology classes associated with bioeconomy technologies based on ifo report and obtain a sample of ~830,000 patents from 2000 to 2020.
- Create the IPC co-classification network at the main group level, perform a cluster analysis to identify cohesive subgroups in the network, and analyze clusters in terms of growth, aggregate centrality and key actors.

DATA

Lens.org EPO PATSTAT

01.01.2000 - 31.12.2020

NETWORKS

Co-classification linkages between IPC classes from ifo bioeconomy report

METHOD

Network clustering, descriptive statistics

MAPPING THE BIOECONOMY

Patent data and technology classifications

104

2019

ifo FORSCHUNGS-BERICHTE

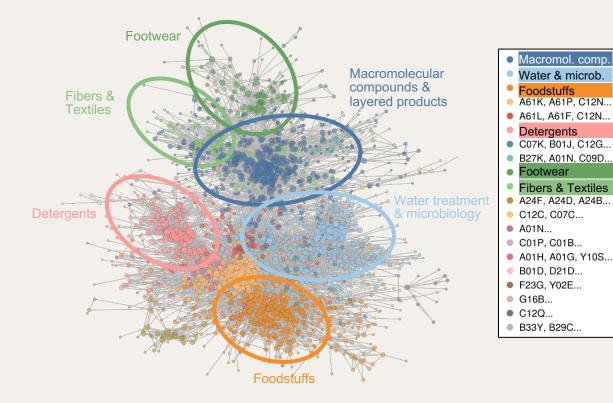
15

Ermittlung wirtschaftlicher Kennzahlen und Indikatoren für ein Monitoring des Voranschreitens der Bioökonomie

Johann Wackerbauer, Tilmann Rave, Lara Dammer, Stephan Piotrowski, Wiebke Jander, Philipp Grundmann, Sven Wydra, Ulrich Schmoch

IPC-Klassifikation	Inhalt
Landwirtschaft, Lebensmittel	
A01H	Neue Pflanzen
A01P	Chemische Mittel zur Regulierung des Pflanzenwachstums
A21D	Konservieren von Mehl oder Teig zum Backen
A23 außer N, P	Lebensmittel
A24B	Tabak
A43B, C	Schuhwerk
C05F	Organische Düngemittel
C13	Zuckerindustrie
F23G 7/02, 10	Verbrennen von organischen Stoffen
Medizin	0
A61K 38	Medikamente mit Peptiden
A61K 39	Medikamente mit Antigenen oder Antikörpern
A61K 48	Medikamente mit genetischem Material
G01N 33/44-98	Analysieren von biologischen Stoffen
Holz, Papier, Textilien	0
B27K	Behandeln von Holz
B27N	Herstellen von Gegenständen aus Holzspänen oder –fasern
D21B, C, D	Cellulose zur Papierherstellung
C14	Häute, Felle, Leder
D01B, C, D	Behandlung von natürlichen Fasern und Fäden
D01B, C, D D01F 02, 04	Fäden aus natürlichen Stoffen
Chemie	raden ads naturiteien Stonen
C02F 3, C02F 11/02, 04	Biologische Behandlung von Wasser und Schlamm
C07G 11-15	Antibiotika, Vitamine, Hormone unbekannter Zusammensetzung
C07K	Peptide
CORC	Behandlung von Kautschuken
C08H	
C08B	Derivate von natürlichen makromolekularen Verbindungen Polysaccharide
	Polysaccharide Massen auf der Basis von natürlichen makromolekularen Verbin
C08L 01, 03, 05, 07, 13, 15, 17, 19, 21, 87, 89, 91, 93, 97, 99	dungen
C09D 11/04, 06, 08	Tinten auf der Basis von natürlichen Stoffen
	rinten auf der basis von natumchen Stoffen
C09D 103, 105, 107, 113, 115, 117, 119, 121, 189, 191, 193,	
117, 119, 121, 189, 191, 193, 197, 199	Überzugsmittel auf der Basis von natürlichen Stoffen
C09F	Naturharze
C09F C09H 01	Natürliche Stoffe zur Herstellung von Leim
C09J 101, 103, 105, 107, 113,	Notamene Stone za nerstenang von Leiti
115, 117, 119, 121, 189, 191,	
193, 197, 199	Farbstoffe auf natürlicher Basis
C11B, C, D	Natürliche Fette, Wachse, Reinigungsmittel
C12	Biochemie
G01N 33/2-14, 44, 46	Analysieren von natürlichen Stoffen

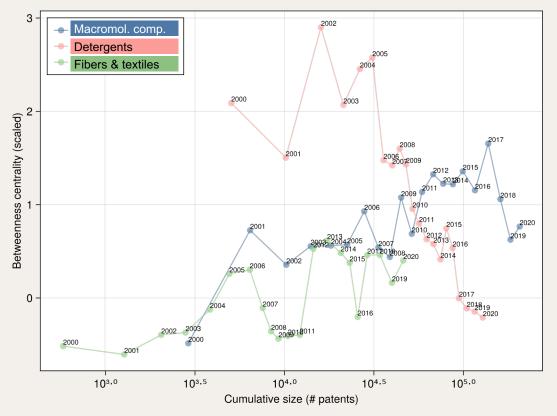
- The bioeconomy contains a broad range of technological fields and disciplines.
- Step 1: Obtain IPC technology classification codes for bioeconomy technologies from ifo report (left).
- Step 2: Based on IPC codes, collect 835,075 patents.
- Step 3: Generate coclassification network.


Leikniz-Institut für Wirtschaftsforsot an der Universität München e.V.

ifo Zentrum für Energie, Klima und Ressourcen

THE BIOECONOMY TECH NETWORK

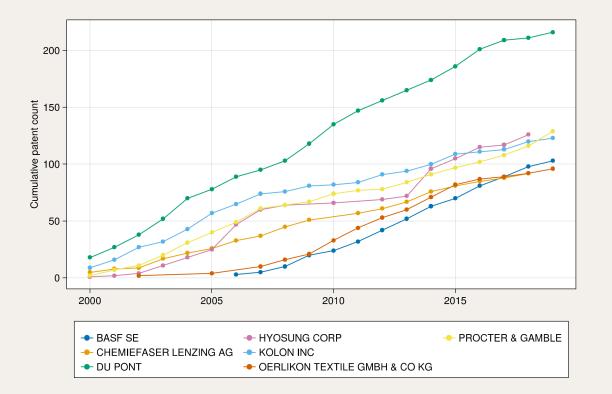
Co-classification of patents connects IPC technology classes



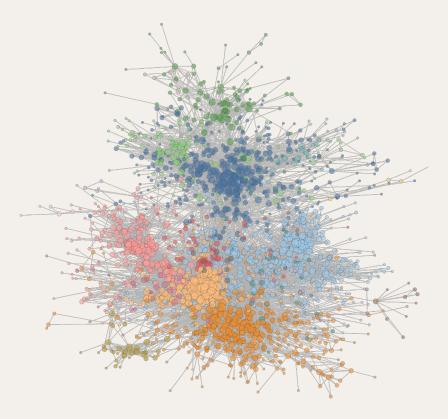
- Each node represents a technology domain as indicated by a IPC maingroup.
- Linkages are a result of coclassification (there are patents which are classified under both the connected IPC labels).
- Colors refer to network clusters (Louvain algorithm), i.e., sets of technologies that are closely connected through coclassification linkages.
- Clusters represent specific applications (e.g. foods, detergents, textiles) and crosssector technologies (e.g. microbiology, macromolecular chemistry).

TECHNOLOGY EVOLUTION IN THE BIOECONOMY

Growth and centrality in selected technologies



- Technology clusters evolve in terms of both their size (number of patents) and position (betweenness centrality) in the bioeconomy tech network.
- Technologies related to detergents development were highly central in the early 2000s but have recently become more peripheral, while still exhibiting strong growth (niche creation).
- While starting out small and peripheral, fiber and textile technologies have also shown exponential growth and are now above average in centrality.


GLOBAL BIOECONOMY INNOVATORS

Key patent applicants in the fibers & textiles bioeconomy cluster

- Strong patent applicants for the textile cluster include large American, Korean and Japanese chemical corporations (e.g. DuPont, P&G, Hyosung or Kolon).
- European specialist firms, such as Lenzing or Oerlikon also feature strongly.
- BASF has entered the domain late but shows strong portfolio buildup over the last 10 years.

KEY LEARNINGS Bioeconomy as a technological field

- Bioeconomy innovation trajectories differ between application fields in terms of growth and overall network position.
 - E.g., development of detergents starts out as a large and central field but moves to its own niche over time. Fibers & textile development starts out small and peripheral but becomes more central over the observation period.
 - Key actors in the textiles & fibers bioeconomy cluster are especially large American & East Asian chemical corporations but European specialist firms, such as Oerlikon or Lenzing, are also increasingly visible due to their portfolios.

THE BIOECONOMY AS A RESEARCH COLLABORATION LANDSCAPE

BIOECONOMY: A RESEARCH COLLABORATION LANDSCAPE

- This network perspective is based on public funding databases with data from the years 2010 to 2022.
- The following social network analysis is based on a keyword search in project descriptions.
- Only projects and organizations that explicitly use the keywords in their descriptions appear in the networks.
- The Networks will represent three timeframes to show the development of the bioeconomy on the European level and of the German textile bioeconomy.

Förderkatalog (BUND) Gepris (DFG) Cordis (EU)

TIMEFRAME

01.01.2010 - 30.04.2022

<u>1</u> 18, c

NETWORKS

Based on the keywords:

- Bioeconomy, Biobased economy
- textile, yarn, clothing, sportswear, fabric, fibre, filament

= $-$

METHOD

Social Network Analysis (Gephi)

Key actors are actors with a high betweenness centrality, which indicates that they are well connected within the network.

22

The university of Wageningen has the biggest label, which means they are the best connected key actor

TEKNOLOGIAN TUTKIMUSKESKUS VTT CENTRE NATIONAL RECHERCHE

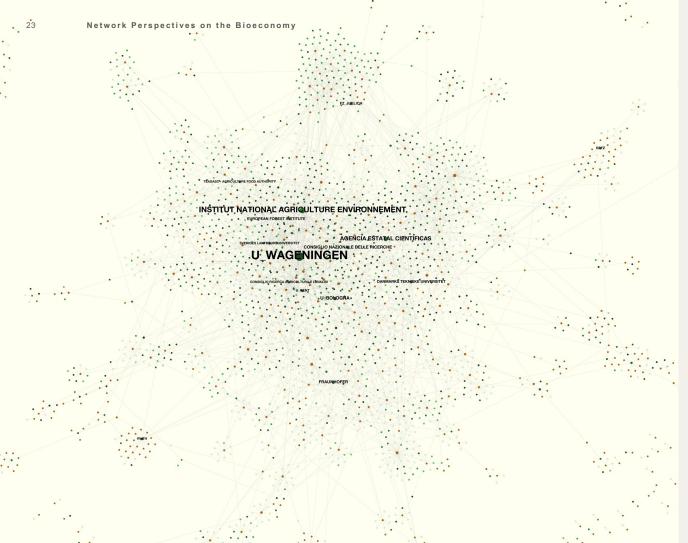
U GRONINGER

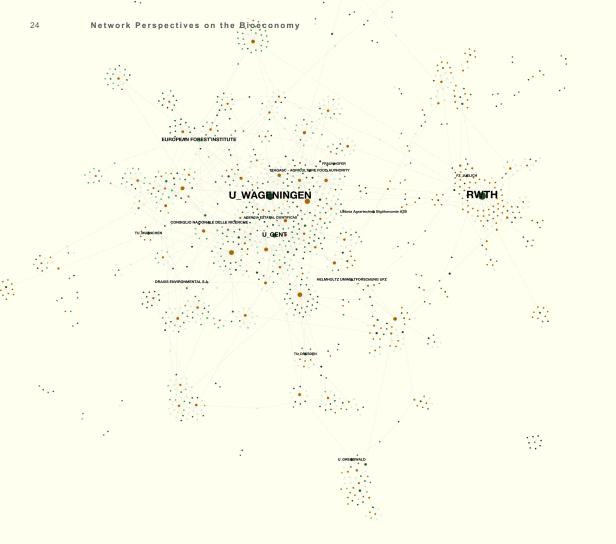
NOVA-INSTITUT

RECHERCHE DEVELOPPEMENT

BIOTEXFUTURE

2010-14 Bioeconomy EU Network


- Early stages of funding programs
- Key actors from the Netherlands, France, Scandinavia, Spain and Germany


- 194 projects started between 2010-2014
 - 117 EU
 - 75 BMBF
 - 2 DFG
- 908 organisations
 - 314 company
 - 206 higher education
 - 192 research organization
 - 127 public bodies
 - 69 others
 - 178 German Organizations

2015-18 Bioeconomy EU Network

- Peak of EU and BMBF funding reached
- Only minor changes of key actors
- Key actors from the Netherlands, France, Scandinavia, Spain, <u>Italy</u>, Germany and <u>Ireland</u>
- 672 projects
 - 385 EU
 - 280 BMBF
 - 5 BMEL
 - 2 DFG
- 2448 organisations
 - 1094 company
 - 436 higher education
 - 402 research organization
 - 282 others
 - 234 public bodies
 - 429 German Organizations

BIOTEXFUTURE

2019-22 Bioeconomy EU Network

- Significant decline in EU funding
 - Shift to circular economy
- Diversification of funding agencies
- RWTH new as a key actor in the bioeconomy
- "Innovation Space effect" visible
- 352 projects
 - 244 BMBF
 - 98 EU
 - 7 DFG
 - 1 BMEL, 1 BMU, 1 BMWi
- 1068 organizations
 - 400 company
 - 246 higher education
 - 196 research organization
 - 143 others
 - 83 public bodies
 - 285 German Organizations

2010-2022

25

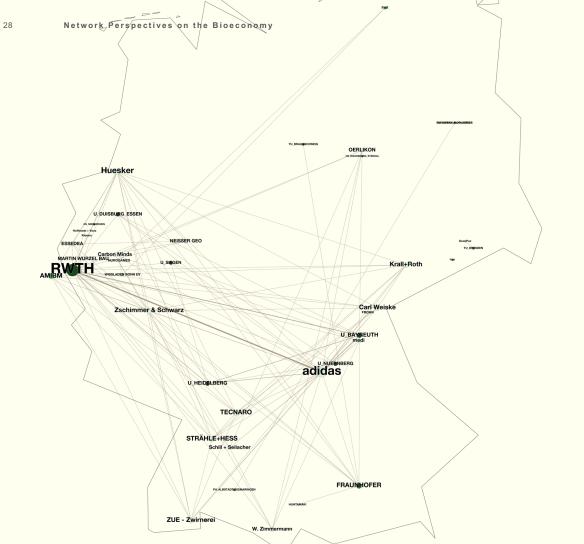
Bioeconomy research collaboration landscape over the entire time period

- The Bioeconomy is concentrated on agriculture and forestry
- As well as biotechnology approaches
- Germany and the BMBF are major drivers
- Only a minor part of the bioeconomy is focused on textile applications

- Percentage of Projects focused on:
- 50,79% Agriculture
- 41,43% Forestry
- 28,56% Biotechnology
- 9,22% Biopolymers (incl. Cellulose)
- 4,44% Textiles

- 1216 projects
 - 600 EU
 - 597 BMBF
 - 11 DFG
 - 6 BMEL
 - 1 BMWi
 - 1 BMU

- 3534 organizations
- 96 Countries
 - 671 Germany (318 EU)
 - 365 Spain
 - 307 UK
 - 274 Italy
 - 240 France
 - 207 Scandinavia
 - 172 Netherlands
 - 167 Belgium



2015-2018 TEXTILE BIOECONOMY in Germany

 Despite being small, the German textile bioeconomy is constantly growing

- 19 organizations
 - 10 company
 - 5 higher education
 - 4 research organization

2019-2022 TEXTILE BIOECONOMY in Germany

- There is a BIOTEXFUTURE effect visible
- BIOTEXFUTURE integrates the textile Bioeconomy in Germany

- 40 organizations
 - 23 company
 - 11 higher education
 - 3 research organization
 - 3 others

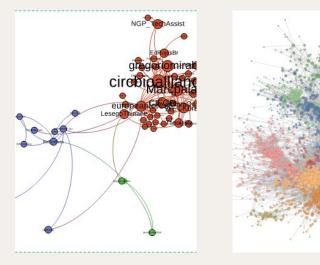
KEY LEARNINGS

29

Bioeconomy as a research collaboration landscape

Funding for the bioeconomy is declining in recent years, shift to the circular economy noticeable. Bioeconomy in general is concentrated on agriculture, forestry and biotechnology.

Germany and the BMBF are major drivers.

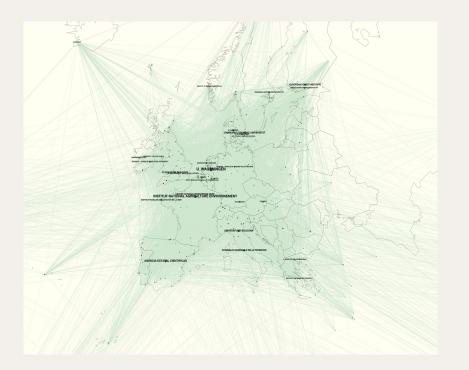

"Innovation space effect" in bioeconomy with several organisations appearing to be central due to their involvement in the innovation space funding scheme of the BMBF.

"BIOTEXFUTURE effect" in German textile bioeconomy with key actors being adidas and RWTH and the majority of organisations in the network being project members of BTF.

KEY TAKEAWAYS

What each perspective has to offer

- Identify important multiplicators
- See trending topics
- See changing focal points of communication
- Get a grasp at public attention


- Identify important knowledge-holders
- See trends in technological categories
- See the interrelatedness
 of technologies
- See where a lot of development happens

- Identify important research hubs
- See emerging new hubs
- See trends in funding allocation and research topics
- See who is collaborating with whom

NETWORKS ARE IMPORTANT

- DIFFERENT PERSPECTIVES HELP TO IDENTIFY A BROAD SPECTRUM OF IMPORTANT STAKEHOLDERS
- SCENARIOS NEED MULTIPLE DATA SOURCES
- NETWORK DATA IS ESPECIALLY USEFUL TO GRASP HOW ACTORS, CONCEPTS AND MATERIALS/TECHNOLOGIES ARE RELATED
- NETWORK VISUALIZATIONS ARE BEST SUITED TO SHOW HUBS AND DEVELOPMENT OF CENTERS

LEA-MARIE BRAUN

lea-marie.braun@uni-due.de

Researcher / PhD Candidate

University of Duisburg-Essen

Department of Computer Science and Applied Cognitive Science

Research Group Digital Communication and Transformation JAKOB HOFFMANN j.hoffmann@uni-heidelberg.de

Researcher / PhD Candidate

Heidelberg University Institute of Geography Economic Geography Group CHRISTOPH HECKWOLF checkwolf@soziologie.rwth-aachen.de

Researcher / PhD Candidate

RWTH Aachen University Institute of Sociology Chair of Sociology of Technology and Organization (STO) MARCO SCHMITT

mschmitt@soziologie.rwth-aachen.de

Post-Doc RWTH Aachen University Institute of Sociology Chair of Sociology of Technology and Organization (STO)